tau decay systematic: powheg-pythia vs powheg-tauola

Introduction

- We have two powheg ttbar samples, which we think are the same except for tau decay: one
 uses pythia, the other uses tauola. Pythia ignores the tau polarisation when simulating the
 decay, while tauola treats it correctly.
 - TTTo2L2Nu2B_7TeV-powheg-pythia6 TT_TuneZ2_7TeV-powheg-tauola
- Two parts of the asymmetry analysis are dependent on the ttbar->dileptons MC:
 - Acceptance matrix
 - Migration matrix
- The difference between the measured asymmetries when using powheg-pythia and powheg-tauola for these matrices should give the systematic associated with the mismodeling of the tau decays in powheg-pythia (next slide)

Results (powheg-pythia vs powheg-tauola)

	powheg-pythia results (same as results) in PAS)	a difference	difference (changing acceptance matrix only)
$\mathcal{A}_{\Delta\phi}^{\ell\ell} = \frac{N(\cos\Delta\phi_{\ell\ell} > 0) - N(\cos\Delta\phi_{\ell\ell} < 0)}{N(\cos\Delta\phi_{\ell\ell} > 0) + N(\cos\Delta\phi_{\ell\ell} < 0)}$	-0.097 -0.09	4 0.0037	0.0039
$\mathcal{P}_{n}^{+} = \frac{N(\cos \theta_{\ell,n} > 0) - N(\cos \theta_{\ell,n} < 0)}{N(\cos \theta_{\ell,n} > 0) + N(\cos \theta_{\ell,n} < 0))}$	-0.035 -0.02	4 0.0105	0.0034
$\mathcal{P}_{n}^{-} = \frac{N(\cos \theta_{\ell,n} > 0) - N(\cos \theta_{\ell,n} < 0)}{N(\cos \theta_{\ell,n} > 0) + N(\cos \theta_{\ell,n} < 0)}$	0.019 0.03	4 0.0148	0.0012
$\mathcal{A}_{c_1 c_2}^{\ell} = \frac{N(c_1 c_2 > 0) - N(c_1 c_2 < 0)}{N(c_1 c_2 > 0) + N(c_1 c_2 < 0)}$	-0.015 -0.00	0.0070	0.0039
$A_{lepC} = \frac{N(\eta_{l^+} > \eta_{l^-}) - N(\eta_{l^+} < \eta_{l^-})}{N(\eta_{l^+} > \eta_{l^-}) + N(\eta_{l^+} < \eta_{l^-})}$	0.010 0.01	0.0002	0.0032
$A_{topFB} = \frac{N(\cos(\theta_t) > 0) - N(\cos(\theta_t) < 0)}{N(\cos(\theta_t) > 0) + N(\cos(\theta_t) < 0)}$	-0.011 -0.01	7 -0.0063	0.0012

- Biggest shift seen in top polarisation. Consistent results in independent + and lepton samples: shift = ~ 0.013 .
- Difference in measured polarisation comes mostly from difference in migration matrices
- Difference in lepton azimuthal asymmetry mostly due to difference in acceptance matrices
 - but could be mostly statistical (including stat uncertainty the result is 0.0039 ± 0.0025)

powheg-pythia reweighting

- Try reweighting angular distribution of tau decays in powheg-pythia to reproduce the effect
- Weight events by $1 + (P \cos\theta (2 x 1))/(3 2 x)$ where $x = (lepton momentum)/(max possible lepton momentum) and <math>\theta = (angle of daughter lepton in tau rest frame)$
 - also reweight x distribution to match that of powheg-tauola (this effect is small)

Powheg pythia distribution looks like powheg-tauola distribution after reweighting

- Weighted results show much smaller systematic shifts than powheg-tauola vs powheg pythia (am I missing some other difference between these MCs?)
 - also tried simple weighting (ignoring x dependence), just $I + (P \cos \theta)/3$, and found similar results
- The largest shift is still seen in top polarisation, and again consistent results are seen between + and leptons
- Top spin correlation (A_{c1c2}) shifts in the opposite direction than on slide 3

	powheg-pythiar e w e results (same as powhein PAS) results		difference	difference (changing acceptance matrix only)
$\mathcal{A}_{\Delta\phi}^{\ell\ell} = \frac{N(\cos\Delta\phi_{\ell\ell} > 0) - N(\cos\Delta\phi_{\ell\ell} < 0)}{N(\cos\Delta\phi_{\ell\ell} > 0) + N(\cos\Delta\phi_{\ell\ell} < 0)}$	-0.097	-0.097	0.0004	0.0004
$\mathcal{P}_{n}^{+} = \frac{N(\cos \theta_{\ell,n} > 0) - N(\cos \theta_{\ell,n} < 0)}{N(\cos \theta_{\ell,n} > 0) + N(\cos \theta_{\ell,n} < 0))}$	-0.035	-0.033	0.0019	-0.0005
$\mathcal{P}_{n}^{-} = \frac{N(\cos \theta_{\ell,n} > 0) - N(\cos \theta_{\ell,n} < 0)}{N(\cos \theta_{\ell,n} > 0) + N(\cos \theta_{\ell,n} < 0)}$	0.019	0.021	0.0023	-0.0004
$\mathcal{A}_{c_1 c_2}^{\ell} = \frac{N(c_1 c_2 > 0) - N(c_1 c_2 < 0)}{N(c_1 c_2 > 0) + N(c_1 c_2 < 0)}$	-0.015	-0.015	-0.0007	0.0000
$A_{lepC} = \frac{N(\eta_{l^+} > \eta_{l^-}) - N(\eta_{l^+} < \eta_{l^-})}{N(\eta_{l^+} > \eta_{l^-}) + N(\eta_{l^+} < \eta_{l^-})}$	0.010	0.010	-0.0000	-0.0001
$A_{topFB} = \frac{N(\cos(\theta_t) > 0) - N(\cos(\theta_t) < 0)}{N(\cos(\theta_t) > 0) + N(\cos(\theta_t) < 0)}$	-0.011	-0.011	0.0000	0.0002

check for other differences between the two MC

- If the only difference was in the tau decay, we would see compatible results between the two MCs when excluding events with taus from the acceptance matrix and the smearing matrix
- Results below: actually most of the difference between the two MCs is independent of taus!

	powheg-pythia results (no taus)	powheg-tauola results (no taus)	difference	difference attributable to tau decay
$\mathcal{A}_{\Delta\phi}^{\ell\ell} = \frac{N(\cos\Delta\phi_{\ell\ell} > 0) - N(\cos\Delta\phi_{\ell\ell} < 0)}{N(\cos\Delta\phi_{\ell\ell} > 0) + N(\cos\Delta\phi_{\ell\ell} < 0)}$	-0.112	-0.107	0.0043	-0.0006
$\mathcal{P}_{n}^{+} = \frac{N(\cos \theta_{\ell,n} > 0) - N(\cos \theta_{\ell,n} < 0)}{N(\cos \theta_{\ell,n} > 0) + N(\cos \theta_{\ell,n} < 0)}$	-0.065	-0.059	0.0063	0.0042
$\mathcal{P}_{n}^{-} = \frac{N(\cos \theta_{\ell,n} > 0) - N(\cos \theta_{\ell,n} < 0)}{N(\cos \theta_{\ell,n} > 0) + N(\cos \theta_{\ell,n} < 0)}$	-0.015	-0.003	0.0123	0.0025
$\mathcal{A}_{c_1 c_2}^{\ell} = \frac{N(c_1 c_2 > 0) - N(c_1 c_2 < 0)}{N(c_1 c_2 > 0) + N(c_1 c_2 < 0)}$	-0.003	0.008	0.0111	-0.0042
$A_{lepC} = rac{N(\eta_{l^+} > \eta_{l^-}) - N(\eta_{l^+} < \eta_{l^-})}{N(\eta_{l^+} > \eta_{l^-}) + N(\eta_{l^+} < \eta_{l^-})}$	0.010	0.011	0.0007	-0.0005
$A_{topFB} = \frac{N(\cos(\theta_t) > 0) - N(\cos(\theta_t) < 0)}{N(\cos(\theta_t) > 0) + N(\cos(\theta_t) < 0)}$	-0.010	-0.017	-0.0067	0.0004

• Difference attributable to tau decays calculated by comparing to slide 3. Results compatible with results from reweighting powheg-pythia (slide 5).

powheg pythia vs tauola, parton level, no cuts

	powheg-pythia	powheg-tauola	difference	
$\mathcal{A}_{\Delta\phi}^{\ell\ell} = \frac{N(\cos\Delta\phi_{\ell\ell} > 0) - N(\cos\Delta\phi_{\ell\ell} < 0)}{N(\cos\Delta\phi_{\ell\ell} > 0) + N(\cos\Delta\phi_{\ell\ell} < 0)}$	<u>0)</u> -0.119	-0.117	0.0011	±0.0012
$\mathcal{P}_n^{+} = \frac{N(\cos\theta_{\ell,n} > 0) - N(\cos\theta_{\ell,n} < 0)}{N(\cos\theta_{\ell,n} > 0) + N(\cos\theta_{\ell,n} < 0)}$	0.003	0.004	0.0013	±0.0012
$\mathcal{P}_n = \frac{N(\cos\theta_{\ell,n} > 0) - N(\cos\theta_{\ell,n} < 0)}{N(\cos\theta_{\ell,n} > 0) + N(\cos\theta_{\ell,n} < 0)}$	0.003	0.003	0.0001	±0.0012
$\mathcal{A}_{c_1 c_2}^{\ell} = \frac{N(c_1 c_2 > 0) - N(c_1 c_2 < 0)}{N(c_1 c_2 > 0) + N(c_1 c_2 < 0)}$	-0.063	-0.062	0.0006	±0.0012
$A_{lepC} = rac{N(\eta_{l^+} > \eta_{l^-}) - N(\eta_{l^+} < \eta_{l^-})}{N(\eta_{l^+} > \eta_{l^-}) + N(\eta_{l^+} < \eta_{l^-})}$	<u>)</u>)	0.004	0.0002	±0.0012
$A_{topFB} = \frac{N(\cos(\theta_t) > 0) - N(\cos(\theta_t) < 0)}{N(\cos(\theta_t) > 0) + N(\cos(\theta_t) < 0)}$	0.005	0.005	0.0002	±0.0012

- As expected, the two MCs are statistically consistent at parton-level when no cuts are made (using status 3 taus)
- There must be other differences besides taus in the decay, but nothing obvious in config files:
 - http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/CMSSW/Configuration/GenProduction/python/
 POWHEG_PYTHIA6_ttbar_Inublnub_7TeV_cff.py?hideattic=0&revision=1.6&view=markup
 - http://cmssw.cvs.cern.ch/cgi-bin/cmssw.cgi/CMSSW/Configuration/GenProduction/python/
 POWHEG PYTHIA6 top tauola cff.py?hideattic=0&revision=1.2&view=markup

Conclusions

- There is a significant systematic difference between the powheg-pythia and powheg-tauola samples for the polarisation measurement
- Only a small amount of the difference (~25%) is attributable to tau decays
 - what other difference between the two MCs could I be missing?
- May be OK to use MC@NLO for the paper?

Monday, November 12, 2012 8